Center-based nearest neighbor classifier

نویسندگان

  • Qing-Bin Gao
  • Zheng-Zhi Wang
چکیده

In this paper, a novel center-based nearest neighbor (CNN) classifier is proposed to deal with the pattern classification problems. Unlike nearest feature line (NFL) method, CNN considers the line passing through a sample point with known label and the center of the sample class. This line is called the center-based line (CL). These lines seem to have more capacity of representation for sample classes than the original samples and thus can capture more information. Similar to NFL, CNN is based on the nearest distance from an unknown sample point to a certain CL for classification. As a result, the computation time of CNN can be shortened dramatically with less accuracy decrease when compared with NFL. The performance of CNN is demonstrated in one simulation experiment from computational biology and high classification accuracy has been achieved in the leave-one-out test. The comparisons with nearest neighbor (NN) classifier and NFL classifier indicate that this novel classifier achieves competitive performance. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...

متن کامل

Representation-based Nearest Feature Plane for Pattern Recognition

In this paper, an improved method based on nearest feature plane (NFP), called as representation-based nearest feature plane (RNFP), is proposed for biometric recognition. Borrowing the concept from the nearest neighbor plane (NNP) classifier and center-based nearest neighbor (CNN) classifier, RNFP chooses the valuable representation of the class to reduce the computational complexity of NFP. A...

متن کامل

Hilbert Space Filling Curve (hsfc) Nearest Neighbor Classifier

The Nearest Neighbor algorithm is one of the simplest and oldest classification techniques. A given collection of historic data (Training Data) of known classification is stored in memory. Then based on the stored knowledge the classification of an unknown data (Test Data) is predicted by finding the classification of the nearest neighbor. For example, if an instance from the test set is presen...

متن کامل

Instance-Based Spam Filtering Using SVM Nearest Neighbor Classifier

In this paper we evaluate an instance-based spam filter based on the SVM nearest neighbor (SVM-NN) classifier, which combines the ideas of SVM and k-nearest neighbor. To label a message the classifier first finds k nearest labeled messages, and then an SVM model is trained on these k samples and used to label the unknown sample. Here we present preliminary results of the comparison of SVM-NN wi...

متن کامل

K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier

This paper presents a novel Nearest Neighbor (NN) classifier. NN classification is a well studied method for pattern classification having the following properties; * it performs maximum-margin classification and achieves less than the twice of ideal Bayesian error, * it does not require the knowledge on pattern distributions, kernel functions or base classifiers, and * it can naturally be appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007